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Biomedical ontologies contain errors. Crowdsourcing, defined as taking a job traditionally performed by a
designated agent and outsourcing it to an undefined large group of people, provides scalable access to
humans. Therefore, the crowd has the potential to overcome the limited accuracy and scalability found
in current ontology quality assurance approaches. Crowd-based methods have identified errors in
SNOMED CT, a large, clinical ontology, with an accuracy similar to that of experts, suggesting that
crowdsourcing is indeed a feasible approach for identifying ontology errors. This work uses that same
crowd-based methodology, as well as a panel of experts, to verify a subset of the Gene Ontology (200 rela-
tionships). Experts identified 16 errors, generally in relationships referencing acids and metals. The crowd
performed poorly in identifying those errors, with an area under the receiver operating characteristic
curve ranging from 0.44 to 0.73, depending on the methods configuration. However, when the crowd
verified what experts considered to be easy relationships with useful definitions, they performed reason-
ably well. Notably, there are significantly fewer Google search results for Gene Ontology concepts than
SNOMED CT concepts. This disparity may account for the difference in performance – fewer search results
indicate a more difficult task for the worker. The number of Internet search results could serve as a
method to assess which tasks are appropriate for the crowd. These results suggest that the crowd fits bet-
ter as an expert assistant, helping experts with their verification by completing the easy tasks and allow-
ing experts to focus on the difficult tasks, rather than an expert replacement.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Ontologies enable researchers to specify, in a computational
fashion, the entities that exist in the world, their properties, and
their relationships to other entities. For instance, a researcher
might encode in an ontology the kinds of cellular components that
exist, such as a nucleus or ribosome. By leveraging such an ontol-
ogy, a computer can recognize that a nucleus and a ribosome are,
in fact, both a kind of cellular component and use that relationship
when aggregating data. Further, ontologies allow everyone to
‘‘speak the same language” by creating a shared set of terms with
clearly defined meanings. This property enables disparate parties
to share data and to integrate them readily. For example, when
two data sources contain different information about cellular com-
ponents (one focused on nuclei and the other on ribosomes) and
use the same ontology to describe that information, a researcher
is able to combine them with relative ease. These powerful proper-
ties enable ontologies to facilitate data integration, search, decision
support, and data annotation [1]. Today, ontologies are ubiquitous.
Indeed, the Google Knowledge Graph contains an ontology that sup-
ports an advanced understanding of entities on the Internet. With
the Knowledge Graph’s ontology, Google provides additional infor-
mation about an entity – a search for a movie also provides its star
actors, director, budget, and so on [2]. Ontologies are latent in
many of the technologies we encounter today. Given the important
of ontologies, it is essential to ensure users are able to build and
maintain them with minimal errors. In this work, we consider
applying crowdsourcing to the task of ontology quality assurance
– a task that is particularly challenging for biomedical ontologies.
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Biomedicine relies heavily on ontologies. In the clinic, they sup-
port electronic health records with tasks such as computerized
physician order entry, alerting, and decision support [3]. In the life
sciences, ontologies help combat the data deluge, giving research-
ers a tool to describe the intricate complexities of biomedicine and
use that encoded knowledge to organize, annotate, and sift through
data [4–7]. One of the most well known biomedical ontologies is
the Gene Ontology [8]. By describing, in a computational fashion,
experimental data and published literature with Gene Ontology
(GO) terms, researchers are able to integrate results that are
described with the same terms and gain insight about cellular
components, biological processes, and molecular functions
involved with a gene set of interest. One common use of these
annotations and terms is GO enrichment analysis, wherein sets of
differentially expressed genes are related, via a statistical over-
representation analysis, to terms in GO [9]. These returned terms
assist a researcher in developing hypotheses about the underlying
biological phenomena that differentiates cases and controls. Of
note, when one works with microarray data, GO enrichment anal-
yses are standard practice. Such studies are pervasive in the
literature.

TheGeneOntology its application is just oneof themanyexamples
the rapid increase in ontology use. Demonstrating this trend, The
National Center for Biomedical Ontology provides a repository,
called the Bioportal, of over 450 ontologies ranging from brain anat-
omy to medical procedures [10]. These ontologies vary in size from
hundreds of concepts to tens of thousands concepts and contain
even more relationships between those concepts. However, as the
size and complexity of ontologies continue to grow, so too does the
difficulty of their development and maintenance. It becomes diffi-
cult for any single engineer to grasp the entirety of the ontology.

As a consequence of the difficulty of ontology development and
maintenance, ontologies, not surprisingly, contain errors. Rector
[11], Ceusters [12,13], Mortensen [14], and others have all identi-
fied systematic issues in SNOMED CT, an ontology intended to
describe clinical encounters, and the National Cancer Institute The-
saurus, a clinical ontology focused on cancer. SNOMED CT con-
tained doman-specific errors such as Short Sleeper SubClassOf
Brain Disorder (brain disorders are not the sole cause of short
sleep) and Diabetes SubClassOf Disorder of the Abdomen

(diabetes is not a disorder of the abdominal cavity but rather of
the endocrine system). In this work, we refer to techniques that
identify such errors as ‘‘ontology verification”. Speaking to the fre-
quency of these errors, there have been entire journal special
issues dedicated to ontology quality verification methods [15].
Unfortunately, these methods are limited in their ability to catch
domain-specific errors. For instance, a common class of computa-
tional ontology evaluation methods is metrics-based. In these
methods, metrics are calculated about various characteristics of
an ontology, such as its structure (e.g., average number of chil-
dren), its syntax (e.g., number of syntax errors), its content (e.g.,
number of definitions) or adherence to best practices (e.g., using
fully defined concepts) [16–22]. These metrics serve as a proxy
for ontology quality. However, quality alone does not point to
specific errors, limiting these methods in their ability to find errors
such as those highlighted above (i.e., domain-specific errors). As a
result, the currently accepted approach for identifying ontology
errors is expert review. Only domain experts can interpret the
symbols in an ontology and determine whether they reflect their
understanding of the domain. However, the use of experts is very
expensive. Experts cannot verify the large ontologies now found
in biomedicine simply by inspection. In short, there is a fundamen-
tal trade-off between scalability (computational) and accuracy
(expert) in current ontology verification methods.

Crowdsourcing, the practice of taking work traditionally done
by one person and outsourcing it to online, anonymous crowds
[23], is one approach to overcoming the limitations existing ontol-
ogy quality assurance methods. Researchers have shown that
crowdsourcing can solve certain intuitive, human-level intelli-
gence tasks more accurately than computers. For example, crowds
of online workers might annotate an image with properties such as
whether it contains a ball or a cat. Performing this task computa-
tionally remains a challenge, but humans can complete it easily.
As crowdsourcing has grown, online platforms have emerged that
provide users (i.e., requesters) with access to crowds (i.e., workers).
The most common form of crowdsourcing on these platforms is
micro-tasking. Here, many workers complete small, short tasks
(requiring only minutes) for small rewards, including monetary
compensation [23]. With this model, large tasks are completed
quickly by large crowds that scale dynamically. Crowdsourcing is
a complement to many computational techniques.

Researchers have begun using crowdsourcing extensively
[24–26]. One challenge that remains in crowdsourcing research is
understanding how the crowd can contribute to solving expert-
level, knowledge-intensive tasks. In the biomedical realm, for one
such expert-level domain, MacLean and Heer developed a crowd-
based methodology to extract medical entities from patient-
authored text [27]. They used crowd workers to find and to label
terms. They then used these labels as a training set for a statistical
classifier. This classifier then identified relevant medical terms
written by patients in online forums. This system was able to iden-
tify medical terms with significantly higher accuracy in compar-
ison to common automated medical extraction methods and thus
showed that the crowd can work reliably on certain medical topics.

The use of crowdsourcing in ontology engineering, a
knowledge-intensive task, is still nascent. There has been begin-
ning investigation into micro-task based ontology mapping and
gaming-based ontology tagging [28–30]. The success of this work
suggests that crowdsourcing is a candidate to solve various ontol-
ogy engineering tasks. Building on these efforts, in our previous
work, we have developed, refined, and applied methods to perform
ontology verification with the crowd [31,32]. At a high level, the
method asks crowd workers to read sentences reflecting natural
language representations of relationships in an ontology and to
decide whether a sentence is TRUE or FALSE based on their knowl-
edge and provided definitions. We have already applied success-
fully this method to verify a sample of SNOMED CT, finding a
number of errors (More detail in Section 2) [14].

In this work, we applied the same crowd-based verification
methodology to another ontology, the Gene Ontology. We investi-
gated how the crowd performed in various configurations and how
their performance varied with task difficulty and the quality of
concept definitions. Further, we developed a strategy to predict a
task’s difficulty based on Google search results. In doing so, we
make the following contributions:

1. We replicated previous work on crowdsourced ontology
verification.

2. We compared and contrast our results on verifying GO with
those of SNOMED CT.

3. We identified the important factors required for successfully
using crowdsourcing for ontology verification.

4. We described a system for a hybrid between crowd-based and
expert-based ontology verification (i.e. ‘‘group-sourcing”).

2. SNOMED CT verification study summary

The current work is based on our previous work [14]. Here, we
summarize the results of that work. Note that the methodology is
the same for both studies, and therefore Section 3 details the
methodology itself.
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We created a hierarchical verification crowdsourcing task tem-
plate. Fig. 1 shows an instantiation of the template asking workers
to determine whether ‘‘Microcephalus is a kind of Disorder of
brain”. We applied this template to SNOMED CT, an ontology that
specifies a set of concepts, terms, and relationships relevant for
clinical documentation. These concepts range from drugs and
procedures to diagnoses and human anatomy. We focused on
200 relationships from SNOMED CT (January 2013 version) that
were widely-used across US hospitals and were likely to contain
errors. We asked 25 workers to complete each of the 200 tasks,
compensating them $0.02 per task and then aggregated their
responses into a final decision [33]. Experts completed the same
verification task in parallel via an online survey to provide a gold
standard of comparison.

The crowd identified 39 errors (20% of the 200 relationships we
verified), was indistinguishable from any single expert by inter-
rater agreement (expert vs. expert kappa: 0.58; crowd vs. expert
kappa: 0.59), and performed on par with any single expert against
the gold standard, with a mean area under the receiver operating
characteristic curve of 0.83. In addition, the crowd cost one quarter
that of experts ($0.50/relationship vs. $2.00/relationship). These
results suggested that the crowd can indeed approximate expert
capability on SNOMED CT. Further, they suggested the crowd is
best suited for verification situations with limited budgets, a lack
of experts, or very large biomedical ontologies. With these promis-
ing results, we moved to test the methodology on the Gene Ontol-
ogy. Unlike SNOMED CT, which is intended for detailed
descriptions on a breadth of clinical encounters, the Gene Ontology
is used primarily to annotate documents and describes a more
specialized field.

3. Methods

In the current work, we investigated the verification of the Gene
Ontology. To show comparability, the methods in this work closely
mirror those of our previous work on SNOMED CT [14]. We first
extracted a manageable, logically complex subset from GO and
created expert-based consensus standard of errors for that subset.
We then used the crowd-based method (in various configurations)
to verify the extracted subset of GO. We analyzed the crowd results
using standard statistical comparisons, focusing on the impact that
various method configurations and task factors had on the meth-
od’s performance.

Gene Ontology. In this work, we evaluated a subset of the GO Plus
version of GO from April 2014. This version adds ‘‘cross ontology
relationships (axioms) and imports additional required ontologies”
resulting in a more semantically rich and complex ontology.1 To
select a manageable portion of GO Plus for verification (200 relation-
ships), we used a modified version of the filtering criteria we devel-
oped previously [34]. The goal of these criteria is to find complex
relationships in the ontology that are likely more error-prone
because experts do not create them directly. In practice, we encoded
the following filtering criteria for relationships using the OWL API, a
software tool for working with ontologies in a programmatic fashion
[35]:

Non-Trivial. A relationship that is not explicitly stated but is
instead logically entailed by the interaction of two or more
axioms. This step removes those relationships that were explic-
itly specified by a human curator.
Direct. A hierarchical relationship between two concepts where
no concept exists in the inferred hierarchy between those two
concepts. This step removes relationships (i.e., subclass axioms
1 http://geneontology.org/page/download-ontology.
to ancestors of the immediate parent) that describe a very sim-
ple hierarchical relationship. Note that such relationships are
always generated by classifiers but ontology visualization tools
may not always show them.
Complete text definitions. Both concepts in the relationship have
a textual definition in GO. In previous work, we found that
definitions are key to successful crowdsourcing [32].

Applying these criteria selects 329 relationships from GO Plus.
We then randomly selected 200 relationships from that resulting
set to have the same number of relations as verified in the SNOMED
CT study [14]. Fig. 2 summarizes the selection process.

Expert Verification of GO. To measure the ability of the crowd-
based method, we first developed an expert-based consensus stan-
dard against which to compare it. The methodology in this work is
the same as prior work and a more extensive description of the
method is available there [34]. Five authors with expertise in
biology, cell biology, biochemistry, ontology and bioinformatics
(NT, JJH, HFM, KVA, and MD) verified the 200 selected relations
in GO following the same format devised in our prior work. This
verification process had two stages: an initial verification survey
followed by a survey designed to resolve inconsistencies in expert
responses. In the first stage, an online survey showed each expert,
for each relationship, two concepts, their definition, and a natural
language representation of the GO relationship. With that informa-
tion, and their background knowledge, each expert indicated
whether they believed the relationship to be correct or incorrect.
Fig. 3 depicts one of the 200 survey questions each expert
completed.

In the second stage, after all experts completed the survey, we
identified relationships about which they disagreed and asked
them to reach consensus via a second survey. This survey followed
the Delphi method [36], wherein experts viewed an anonymous set
of responses and comments from other experts and then reconsid-
ered their initial response in light of this new information. Fig. 4
shows an example of this survey. With the responses collected,
we created an expert-based consensus standard of the error status
of the 200 GO relationships by using a super-majority vote (i.e., 4
out of 5 experts). We excluded from the standard those relation-
ships on which experts could not achieve super-majority
agreement.

Crowd-Based Verification of GO.We asked the crowd to verify the
200 GO Plus relationships using the methodology developed previ-
ously [14]. Following that method, we thus submitted tasks to an
online crowdsourcing platform, presenting workers with a verifica-
tion task similar to that which the experts completed. Specifically,
our task asked workers to read a natural language representation
of a GO relationship and to determine whether that sentence is
TRUE or FALSE based on their knowledge and a set of provided defi-
nitions. Fig. 5 shows a screenshot of such task. Workers were com-
pensated for the completion of each verification task.

After we received 25 worker responses for each verification
task, we combined them using the unsupervised aggregation tech-
nique developed by Simpson and colleagues [33]. The intuition
behind this method is that it attempts to determine the probability
that each relationship is ‘‘correct” by estimating worker ability and
task difficulty. In short, the methodology treats worker responses
as samples that are drawn from a multinomial distribution that
is parameterized by Dirichlet distributions designed to model
worker ability and task difficulty. A variational Bayes approach
(similar to Expectation Maximization) is used to arrive at approx-
imate parameters that describe these Direchlet distributions and
that predict the observed data. As a side effect, the Dirichlet distri-
butions also predict worker specificity and sensitivity. Using the
method’s results, we measured how well the crowd performed in
comparison to the expert-based consensus standard.

http://geneontology.org/page/download-ontology


Fig. 1. Example SNOMED CT verification task. An instantiation of the crowdsourcing task template with which crowd workers verified SNOMED CT.

Logical axioms
in GO Plus

SubClassOf 
axioms

Non-asserted, entailed 
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Fig. 2. Filtering GO relationships to a manageable subset. To select a manageable,
complex subset of Gene Ontology relationships, we applied a filtering process that
selects relationships that are (1) not explicitly specified by the ontology developers
but instead logically entailed and (2) contained concepts with explicit text
definitions.
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Experiments and Configuration. We experimented with the
method by varying the following dimensions: crowdsourcing plat-
form, compensation amount, and worker quality filters. The first
dimension we manipulated was the platform, either CrowdFlower2

and Mechanical Turk.3 Next, we compensated workers at either
$0.02 per task or $0.06 per task. Finally, we applied quality filters
on each platform to filter workers either stringently or not
(i.e., low-quality vs. high-quality configuration). Crowdflower pro-
vides three levels of worker quality that a requester can specify.
Level 1 workers are the lowest quality but provide the fastest
response, while Level 3 provides the slowest response but highest
quality. On CrowdFlower configurations, we required Level 3 work-
ers for the high-quality configurations. Mechanical Turk awards a
Masters certification to workers who have the highest rates of accu-
racy across a wide variety of tasks. On Mechanical Turk configura-
tions, we required Masters level workers for the high-quality
configurations.

Task Factors. In our experiments, we explored the impact of the
following four factors:

Task Difficulty. The level of challenge in verifying a particular
relationship likely affects worker performance. While there is
2 www.crowdflower.com.
3 www.mturk.com.
no absolute measure of difficulty, we indirectly captured task
difficult by measuring the level of expert agreement on a partic-
ular relation. When experts can reach consensus, we consider
the task easier than when they cannot reach consensus. There-
fore, there are 3 degrees of task difficulty: Pre-Delphi, where
experts agreed entirely on a relation in the first round; Post-
Delphi, where experts agreed entirely after the Delphi round,
and Near-Agreement, where experts agreed with only a
super-majority after Delphi. Note that we do not include mere
majority agreement because we excluded these relations from
the consensus standard.
Definition Quality. In previous work, we showed that context
(i.e., concept definitions) was critical for a high-performing
crowd [32]. To examine this effect in the current study, we
asked experts to rate the usefulness of concept definitions dur-
ing each verification task. We used their response as a proxy for
definition quality. Definition quality for a particular relation has
three discrete values: none useful, one useful, and two useful.
Worker Ability. Simpson and colleague’s aggregation method,
which we used to combine worker votes optimally, also esti-
mated the sensitivity and specificity of each worker [33]. We
used these estimates to measure average worker ability in each
configuration.
Term ‘‘Google-ability”. Crowd workers often use online search
engines to assist with completing a task. Workers may perform
better when these search engines provide useful results. To
quantify the ease of an online search, we measured the number
of search results Google provides for concepts in the verification
set.4 We performed these searches in February 2015 using an
anonymous network connection in an effort to avoid personal-
ized search results.

Analysis. We measured the performance of the crowd-based
method by Area Under the Receiver Operating Characteristic curve
(AUC). This measure ranges from 0 to 1 and captures how well the
methodology performed at identifying the correct and incorrect
relationships listed in the expert-based consensus standard at var-
ious probability thresholds. Next, to obtain better estimates for
AUC, we performed bootstrapping, a process of repeatedly running
our experiments by randomly subsampling from the set of rela-
tionships. With this bootstrapped distribution of AUCs, we could
generalize how the method would perform, on average, with
similar datasets. In this study, we performed 10,000 bootstrap
4 www.google.com.

http://www.crowdflower.com
http://www.mturk.com
http://www.google.com


Fig. 3. Example expert verification survey. To create a consensus standard of errors in the GO relationship subset, we asked experts, the gold-standard method for verification,
to complete an online survey in which they assessed the correctness of the selected relationships.
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iterations for each configuration. We then compared the boot-
strapped AUC distributions between various configurations and
factors using standard statistical techniques. Specifically, we used
t-tests with Benjamini–Hochberg false discovery rate correction
when comparing any two configurations. In addition, we used a
two-way ANOVA to understand the relative contributions of each
factor has on the variability of the AUC. Finally, we used a
Wilcoxon rank-sum test, a non-parametric test, for ‘‘Google-
ability” comparisons because the search count distributions are
not normally distributed.

4. Results

We verified a 200 relation subset of the Gene Ontology (GO) in
two ways, by experts and by the crowd. Table 1 lists the 16 errors
that experts identified by super-majority vote. Note that there is
only a small percentage of errors out of 200 relations verified.
Further, many of the terms are abstract (e.g., ‘‘response to acetate”
is generic and difficult to reason about), making the verification
task quite challenging. This list of errors serves as the set of incor-
rect relationships in the consensus standard against which we
evaluated the crowd.

We then used our crowd-backed method to verify the same 200
relations that the experts examined. We ran the methodology with
8 different configurations, faceting on amount paid (high and low),
quality filter level (high and low), and platform (Mechanical Turk
and CrowdFlower). Table 2 summarizes the performance of the
crowd in aggregate (via bootstrapped AUC). We observed a signif-
icant difference in performance between all configurations except
in two situations. There was no significant difference in AUC
between the low-cost, high-quality and high-cost, high-quality
configuration on Mechanical Turk. This result indicates that the
method’s performance on Mechanical Turk was likely not strongly
influenced by rate of reimbursement alone. As an aside, we also
calculated the estimated sensitivity and specificity of an average
individual worker. Please note, this measure does not describe



Fig. 4. Example expert Delphi survey. Once experts completed the initial survey, we asked them to reach consensus on areas where all five did not agree. Experts completed
another survey where they read the anonymous responses and comments that all experts made about the relationships and then updated their response considering this new
information. Formally, this process is known as the Delphi method. With consensus obtained, we then had a reference standard of errors against which to compare the crowd.
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the crowd’s aggregate performance directly. There was no signifi-
cant difference in the mean estimated worker sensitivity between
the low-cost, low-quality and high-cost, high-quality configuration
on CrowdFlower. This indicates that, for this task, the average esti-
mated performance of each individual worker on Crowdflower did
not vary (i.e., the average worker was the same in each configura-
tion). While the average worker in each configuration was the
same, outliers may account for the variability in the aggregation
method’s performance. Therefore, it is possible that higher paying
tasks are more likely to attract outliers.

Next, we examined how the crowd performed on subsets of
relations. In particular, we stratified relations by degree of expert
agreement and by usefulness of the definitions (as rated by the
experts) provided for each relation. Table 3 shows the breakdown
of the number of relations that fall into the stratified subsets. Note
that some strata (e.g., relationships with two useful definitions and
near agreement by experts) contain very few relations.

We then measured the mean bootstrapped AUC of the crowd-
backed method on subsets of relationships stratified by expert
agreement and definition usefulness. Doing so enabled us to deter-
mine where and why crowd performance varied. Table 4 provides
the results of this subset analysis. Note that worker performance
varies strikingly between various strata. For the majority of config-
urations, worker performance in each stratum differed signifi-
cantly from other strata. Further, via ANOVA, we found that
definition usefulness and expert agreement along with the interac-
tion of those two dimensions all significantly affect the variability
in AUC. This interaction indicates that neither definition usefulness
nor the level agreement alone account for the variability of the
method’s performance.

While expert agreement is useful for identifying where the
crowd will performwell, their agreement is available only in a con-
trolled experiment. A typical application of our method will not
have expert comparison. Therefore, we developed an alternative
method of quantifying task difficulty by considering the number
of results that a Google search will return for a particular term.
Fig. 6 shows the empirical cumulative distribution of the number
of search results for concepts referenced in the GO and SNOMED
CT relations verified. Note that there is a marked difference in
the number of search results between GO and SNOMED CT in addi-



Fig. 5. Example crowd task on CrowdFlower. In parallel to the expert verification, we submitted the same ontology verification task to two online platforms, CrowdFlower
and Mechanical Turk, in various compensation and quality filtering configurations.

Table 1
Errors in GO subset identified by expert panel.

Child Parent

Cellular response to chlorate Cellular response to acid
Cellular response to fluoride Cellular response to acid
Cellular response to nitrate Cellular response to acid
Cellular response to ozone Cellular response to acid
Extrinsic component of stromal side of

plastid inner membrane
Extrinsic component of lumenal side
of plastid thylakoid membrane

Positive regulation of mitochondrial
membrane permeability involved
in apoptotic process

Mitochondrial outer membrane
permeabilization involved in
programmed cell death

Response to acetate Response to acid
Response to fluoride Response to acid
Response to nitrate Response to acid
Response to nitrite Response to acid
Response to ozone Response to acid
Response to chromate Response to transition metal

nanoparticle
Response to manganese ion Response to transition metal

nanoparticle
Response to methylmercury Response to transition metal

nanoparticle
Response to silver ion Response to transition metal

nanoparticle
Response to vanadate(3-) Response to transition metal

nanoparticle

After completing the two survey rounds, experts identified 16 errors in the 200
relationship GO subset we selected. There are three general error categories: acid-
related, metal-related, and region-related.

Table 2
Method performance on verifying GO subset (various configurations).

Configuration Performance⁄

Platform Cost Quality Mean
AUC

Mean worker
sensitivity

Mean worker
specificity

CrowdFlower Low Low 0.52 0.67 0.71
High Low 0.73 0.66 0.70
Low High 0.58 0.66 0.73
High High 0.62 0.67 0.73

Mechanical
Turk

Low Low 0.48 0.65 0.72
High Low 0.60 0.65 0.73
Low High 0.44 0.66 0.74
High High 0.44 0.62 0.72

We measured the performance of the crowd via a bootstrapped AUC and estimated
worker sensitivity/specificity in various configurations of platform, cost, and qual-
ity. We then compared each configuration to every other configuration to under-
stand whether the performance varied significantly.
⁄ Performance on all configuration pairs differed significantly except:
Sensitivity CrowdFlower Low-Cost,Low-Quality vs. CrowdFlower High-Cost,
High-Quality.
AUC Mechnical Turk Low-Cost,High-Quality vs Mechanical Turk High-Cost,
High-Quality.

Table 3
Number of relationships stratified by expert agreement and definition usefulness.

Not useful One useful Two useful All

Pre-Delphi 81 28 15 124
Post-Delphi 19 10 3 32
Near-Agreement 14 7 4 25
All 114 45 22 181

We stratified the selected 200 relationships by two dimensions: (1) expert agree-
ment (based on the Delphi rounds), which served as a proxy for task difficulty
where less expert agreement implied higher task difficulty, and (2) expert-rated
definition utility, which served as a proxy for definition quality for a relationship
where the greater number of useful concept definitions for a relationship implied
higher task definition quality. Note that some strata contain very few relationships.
(For row label explanation see ‘Task Difficulty’ on page 4. For column label
explanation see ‘Definition Quality’ on page 4.)
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tion to a large difference between search results when the search
term is quoted versus unquoted.

We then measured whether the search distributions differed
significantly from one another. Table 5 describes this comparison.
Whether searching with a quoted string or not, there was a signif-
icant difference between the number of Google search results. Fur-
ther, SNOMED CT terms returned a higher number of search results
when unquoted. However, when quoted, SNOMED CT terms
returned fewer results. This disparity is likely due to the construc-
tion of SNOMED CT Fully Specified Names, which do not reflect
written or spoken vernacular language. For example, the term ‘‘re-
sponse to acid” from GO likely occurs exactly as written in free



Table 4
Stratified analysis of crowd performance (Mean AUC).

Not Useful One Useful Two Useful All

(a) CrowdFlower: low-cost, low-quality
Pre-Delphi 0.08 0.13
Post-Delphi 0.53 0.47
Near-Agreement 0.78 1.00 0.63
All 0.57 0.07 0.98 0.52

(b) CrowdFlower: high-cost, low-qualitya

Pre-Delphi 0.90 0.94
Post-Delphi 0.73 0.74
Near-Agreement 0.52 1.00 0.66
All 0.70 0.91 1.00 0.73

(c) CrowdFlower: low-cost, high-quality
Pre-Delphi 0.84 0.79
Post-Delphi 0.74 0.73
Near-Agreement 0.49 0.31 0.51
All 0.56 0.84 0.25 0.58

(d) CrowdFlower: high-cost, high-quality
Pre-Delphi 0.38 0.31
Post-Delphi 0.53 0.53
Near-Agreement 0.55 0.07 0.70
All 0.63 0.35 0.43 0.62

(e) Mechanical Turk: low-cost, low-quality
Pre-Delphi 0.65 0.62
Post-Delphi 0.41 0.40
Near-Agreement 0.38 0.11 0.47
All 0.49 0.63 0.35 0.48

(f) Mechanical Turk: high-cost, low-qualityb

Pre-Delphi 0.60 0.68
Post-Delphi 0.50 0.55
Near-Agreement 0.41 0.43 0.62
All 0.58 0.67 0.70 0.60

(g) Mechanical Turk: low-cost, high-quality
Pre-Delphi 0.32 0.42
Post-Delphi 0.36 0.39
Near-Agreement 0.57 0.20 0.50
All 0.44 0.40 0.58 0.44

(h) Mechanical Turk: high-cost, high-qualityc

Pre-Delphi 0.30 0.33
Post-Delphi 0.48 0.48
Near-Agreement 0.37 0.06 0.38
All 0.45 0.31 0.44 0.44

For each configuration (shown per subtable), we investigated worker performance
on the stratified relationships shown in Table 3 (See it for row and column defi-
nitions). We measured the crowd performance in those strata by bootstrapped AUC.
Next, we performed a Two-Way ANOVA to measure the effect that expert agree-
ment, definition utility, and their interaction have on AUC. In addition, within each
configuration, we compared each stratum pairwise to understand where crowd
performance differed significantly between those strata. Task difficulty, definition
quality, and their interaction have a significant effect on crowd AUC for every
configuration (p < 0.05 via Two-Way ANOVA). Crowd AUC between each stratum is
significantly different except where noted in the footnote. Blanks indicate there is
not at least one correct and incorrect relationship and therefore AUC is incalculable.

a All pairs significant except Near-Agreement, Two Useful–All,Two Useful.
b All pairs significant except: Pre-Delphi, One Useful–All,All.
c All pairs significant except: All,Two Useful–All,All.
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text, while the term ‘‘Cellulitis and abscess of buttock (disorder)”
from SNOMED CT is less likely to occur exactly as written in free
text, particularly due to the parenthetical component.

Finally, we honed in on the variability of Wikipedia search
results between GO and SNOMED CT. Wikipedia is an information
rich source that many crowd workers likely visit while completing
tasks. Fig. 7 shows the distribution of Wikipedia pages in Google
searches results. We observed that SNOMED CT concepts have a
greater number of Wikipedia results on average, than do GO con-
cepts – a similar trend to the total number of search results
returned for that concept.
5. Discussion

Experts identified 16 errors in the GO subset, 8% of the relation-
ships they verified. The GO editors have already corrected acid-
related errors independently, indicating the errors are indeed
‘‘real”. Recall that in our earlier SNOMED CT work, experts identi-
fied more than twice as many errors. It is important to note that
our sampling of both GO and SNOMED CT likely selected for
highly-curated non-trivial entailments. In GO, we selected relation-
ships where concepts had textual definitions, thus requiring a min-
imum level of curation. In SNOMED CT, we selected relationships
that contained concepts that were frequently used in-practice
(via CORE subset). Therefore, if we had performed the study on
any other, less-curated subset, the error rate would likely be
higher. The errors in GO fell into three common categories: unclear
definition of acid, unclear definition of metal, and lack of regional
clarity for cellular components. For the acid and metal errors, the
cause of errors appears to be ambiguity in concept naming conven-
tions. For the regional clarity errors, the cause appears to be subtly
incorrect logical definitions (as were many of SNOMED CT errors).

The crowd-based method’s performance in identifying these 16
errors was highly variable, ranging from a mean AUC of 0.73 on
CrowdFlower with high compensation to 0.44 on some Mechanical
Turk configurations. Because these numbers are bootstrapped, we
are confident these results are not random. In certain configura-
tions and certain subsets, the crowd performed perfectly (an AUC
of 1). However, they performed rather poorly in others. The
highly-paid (i.e., $0.03 per task), low-quality (i.e., no quality filter
for worker ability) Mechanical Turk and CrowdFlower configura-
tions show a clear trend – as task difficulty decreases and defini-
tion quality increases, workers perform better. This trend is not
consistent in all of the data, unfortunately. One potential reason
why these configurations exhibited better performance is that
the market focuses on highly-paid tasks with low entry require-
ments. Therefore, platform veterans (i.e., well performing workers)
are more likely to complete such tasks when presented in such a
configuration. In summary, the crowd does not perform nearly as
well on GO as they did on SNOMED CT, but they may still perform
well on particular kinds of relationships.

There are several differences between this study and the
SNOMED CT study that might contribute to the variability in crowd
performance. First, the terms in GO are less frequent in an Internet
search (Fig. 6). Thus, if workers rely on Google for help with com-
pleting the task, they are less likely to find the results they need. If
one construes the verification task as a task of understanding and
structuring free text knowledge available on the Internet, then
workers maybe be less able to succeed because GO has fewer
search results. Second, the GO terms themselves are more esoteric
than SNOMED CT. For example, workers likely had some familiarity
with the anatomy terms in SNOMED CT but have not encountered
phrases like ‘‘Stromal side of the thylakoid membrane” unless they
had advanced training in biology. Finally, the error rate is half that
of SNOMED CT. We speculate that this reduced error rate biases
workers to hesitate when they see a potential error and that it
biases the aggregation method because there is a strong statistical
prior against an error occurring. The level of curation in GO is much
higher than that of SNOMED CT – in particular, GO is much smaller
and has a more active maintenance and Q/A model. The difference
in curation may account for the reduced error rate. In short, it
appears that verifying GO is simply more difficult than verifying
SNOMED CT. The results suggest that portions of the Gene Ontol-
ogy sit at the boundary of the crowd’s capabilities to complete
expert-level, knowledge-intensive tasks.

The difficulty of verifying GO and the crowd’s poor performance
underscores the importance of intelligent worker and task
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Table 5
Median number of Google search results for concepts in verification task.

Search type Ontology Median search results⁄

Quoted Gene Ontology 6125
SNOMED CT 780

Unquoted Gene Ontology 450000
SNOMED CT 723500

To understand whether the number of search results available for GO concepts and
SNOMED CT concepts differed significantly, we ran a Wilcoxon rank-sum test.
⁄ There was a statistically significant difference in number of search results
between GO and SNOMED CT for both quoted and unquoted searches (p < 0:05).
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selection. As we have shown in previous work, and as some config-
urations in this experiment showed, the crowd performs best with
appropriate context (i.e., definitions) and with easier tasks [32].
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Fig. 7. Distribution of Wikipedia pages in Google search results for concepts referenced i
search results. We captured the difference in useful search results by the number of Wikip
searching for concepts in GO or SNOMED CT, there is a considerable difference between
Therefore, it is important to be able to quantify, a priori, how diffi-
cult a task is without knowing the correct answer. Considering the
change in search results between GO and SNOMED CT, we propose
using the number of search results as a predictor of task difficulty.
In addition, it is important to have high-quality definitions. When a
relationship’s concepts lack definitions, one potential solution is to
use crowdsourcing to assist with generating them. Such a method
must exercise caution, as a crowd worker could generate a poor
definition and later verify a relationship as ‘‘correct” based on that
poor definition. Heuristics and metrics to assess definition quality
would be essential to a combined define and verify system. In a
real-world, crowd-based ontology verification situation, an ontol-
ogy developer could first measure programmatically the number
of Internet search results for a given relationship. Only when the
32
ipedia.org
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l concepts

n verification task. The number of search results does not necessarily indicate useful
edia pages contained within the first page of a Google search result. Note that when
the number of Wikipedia pages.
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number of search results (or Wikipedia entries) exceeds some
threshold would the ontology developer send out the task to the
crowd. She would route the remaining relationships to an expert
or verify them herself. In such a setup, the crowd is an ontology
engineering assistant, rather than an independently operating
substitute expert. Here, the crowd would complete easy tasks,
reducing the load of an ontology engineer and would return tasks
for review for which they are not confident (i.e., the probability of
an error is �0.5).

When verifying GO, the crowd performed poorly. Indeed, it
appears the crowd alone cannot address all the challenges of
improving ontology engineering methods. The crowd likely is best
included in part of a larger system, much like the assistant
described above. We call this system a ‘‘group-sourced” ontology
development environment. Here, the crowd, the computer, and
expert work in concert. Each contributes their strengths, complet-
ing tasks best suited to them. For example, suppose an ontology
engineer is developing a large, logically-complex biomedical ontol-
ogy. In the background, a computer-based agent would search for
areas in the ontology with potential errors using a battery of qual-
ity heuristics. Once the agent identifies candidate regions in the
ontology, it would determine, by applying another set of rules
(e.g., the number of search results as a threshold), which relation-
ships to bring to the attention of the human developer and which it
could verify via crowdsourcing. Later, the agent would gather,
aggregate, and present the crowdsourced results to the expert.
The agent would learn continually about the engineer based on
her responses to its tasks and tailor its actions to best fit her
requirements and expectations. Further, the agent would retain a
customized crowd workforce who perform best at the verification
task. This workflow is applicable in more ontology engineering
than just verification. It could also help with ontology generation,
mapping, and alignment. We envision such a system integrated
into our collaborative Protégé ontology development environment
[37]. Here, multiple experts collaborate together in an online tool
to construct an ontology, typically focusing on a component in
which they specialize. The ‘‘group-sourcing” system outlined
above would enhance the collaborative Protégé tool greatly, pro-
viding its users with additional ways to engineer and evaluate
the ontologies they build by leveraging the computer-based agent
and the crowd.

To move toward such a system, the next step is to perform a
large-scale application of the crowd-based verification method.
Our studies thus far have been limited by expert availability and
resource availability. A larger analysis would focus on a single,
complete ontology development cycle (from editing to release) in
collaboration with an organization that produces a biomedical
ontology (e.g., GO Consortium). This study would serve to confirm
the capability of the methodology and to pilot the basics of an inte-
grated ‘‘group-sourcing” system. There are two potential
approaches we propose: (1) a split trial, in which different engi-
neers complete the same cycle with or without the assistance of
the crowdsourcing method, or (2) a retrospective study, in which
engineers complete the cycle with the crowd-backed method and
they compare their results to those of prior releases. In either,
we would measure how the ontologies change, determine error
rates via third party review, record the resource requirements,
and survey the user experience. Our results thus far have been
encouraging and we look forward to seeing how the crowd scales.
6. Conclusions

As ontology use increases in biomedicine, its important to min-
imize errors. Current methods that detect errors have two main
limitations: scalability and accuracy. In prior work, we developed
a crowdsourcing-based method that overcomes these limitations
and show it performed well when verifying SNOMED CT. Here,
we applied that same method, in various configurations (cost,
quality, and platform), to verify the Gene Ontology. On the whole,
the crowd did not perform as well as they did on SNOMED CT.
However, in certain configurations, the crowd performed reason-
ably well, particularly on tasks where experts rated the definitions
as useful and reached early agreement. Further investigation into
where the boundary between crowd and expert lies is certainly
warranted. These results suggest that the crowd is not a panacea,
but instead a powerful tool that performs best when working with
the appropriately selected tasks (i.e., the ones with good context
that are not overly difficult). Considering that, we outlined a sys-
tem in which a computational agent, the crowd, and experts all
work together to construct high-quality, error-free ontologies.
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